High-Speed DDR4 Memory Designs and Power Integrity Analysis

Cuong Nguyen
Field Application Engineer
cuong@edadirect.com
PCB Complexity is Accelerating

Trends in PCB Complexity

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Min trace/spacing (th)</td>
<td>6.5/6.5</td>
<td>5.4/5.4</td>
<td>4/4</td>
<td>3.9/4.2</td>
</tr>
<tr>
<td>Total metal layers</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Total area (in²)</td>
<td>101</td>
<td>76</td>
<td>75</td>
<td>53</td>
</tr>
<tr>
<td># Nets</td>
<td>1465</td>
<td>2952</td>
<td>3411</td>
<td>2109</td>
</tr>
<tr>
<td># Pin-to-pin connections</td>
<td>5190</td>
<td>8813</td>
<td>10960</td>
<td>6228</td>
</tr>
<tr>
<td># Components</td>
<td>649</td>
<td>1981</td>
<td>3400</td>
<td>2608</td>
</tr>
<tr>
<td># Component pins</td>
<td>4214</td>
<td>7760</td>
<td>13505</td>
<td>10122</td>
</tr>
<tr>
<td>Leads / part</td>
<td>7</td>
<td>6</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Leads / in²</td>
<td>42</td>
<td>155</td>
<td>244</td>
<td>304</td>
</tr>
</tbody>
</table>

Data based on Technology Leadership Awards entry averages

- Use of Advanced Technologies…
 - HDI (40%), RF/Microwave (26%)
 - Flex/Rigid Flex (9%), Chip-On-Board (11%)
SI/PI Analysis in the Design Flow

Pre-Layout
- System Design, Part Selection, Schematic Entry
- Signal Integrity, Crosstalk, EMC, and Timing Analysis

Layout
- Full Board Place-and-Route
- Board Partitioning and Critical Net Place-and-route
- Post-layout Signal Integrity, Crosstalk, and EMC Verification

Prototyping
- Prototype
- Functional Testing & Debugging
- EMI Testing & Debugging

To eliminate costly $$ design changes here

Post Layout
- Design Verification
- Adhering to Constraints
- Finding Design Flaws
- Tuning Pre-emphasis and Equalization

Design Constraints
Technology Investigation
Routing (topology) Options
Stackup Definition

© 2012 EDA Direct Inc.
www.edadirect.com
High-speed PCB Design Issues

• **Signal Integrity**
 - General interfaces
 • Timing, crosstalk, signal quality
 - DDRx
 • Full STA, slew rate derating, write leveling
 - SERDES
 • Loss, impedance discontinuities, BER prediction

• **Power Integrity**
 - DC : do I have enough metal?
 • Voltage drop, high current density, neckdowns
 - AC : do I have enough caps? values?
 • Well-mounted? Good stackup?
 • Impedance profile, noise propagation

• **EMI/EMC**
 - Emission Regulations
Setup/planning – Board Stackup Design

- **Signal Integrity**
 - **Impedance**
 - Highest impedance will drive layer thicknesses
 - Need reference planes for uniform impedance
 - **Loss**
 - Drives trace widths → layer thicknesses
 - **Crosstalk**
 - Drives spacing requirements and routing density

- **Power Integrity**
 - Need enough **thick** planes to minimize DC drop
 - Need **closely-spaced** plane pairs for AC needs
 - Need stitching **vias** to relieve current choke points

- **EMI/EMC**
 - Need **solid** reference planes throughout stackup
Design Considerations

• **Layout/Route**
 – Avoid crossing splits in reference planes (discontinuities)
 – Minimize Inter Symbol Interference (ISI) using matched Impedances
 – Minimize Crosstalk by isolating sensitive bits (ie. Strobes)
 – Match traces within byte lanes (DQ, DM, DQS) to minimize skews

• **Power Supplies**
 – Use precision resistors for \(V_{REF} \)
 – Short/Wide traces to minimize \(L \) and loss
 – 15~25mil clearance from \(V_{REF} \) to adjacent traces to minimize coupling
 – Decouple high frequency Power Supply noise w/caps

• **Signaling**
 – DQ Driver Impedance Matching with proper drive strengths
 – ODT is a must for better Signal Integrity (if not used then use T-branches or dumping resistor to minimize reflections
 – Choose termination carefully to balance power consumption, signal swing, and reflection
 – Use 2T timing for Address/Command
Signal Integrity Analysis

Signal Integrity
Crosstalk
EMC
Eye Diagrams

Sweep Parameters
Impedance/Stackup Planning
Multi-Board
Controller Delays DQ signals internally
DQ & DQS signals are sent “Level” with the Addr/CLK
Overview – DDR3 vs. DDR4

<table>
<thead>
<tr>
<th></th>
<th>DDR3</th>
<th>DDR4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD/VDDQ/VPP</td>
<td>1.5/1.5/NA (1.35/1.35/NA)</td>
<td>1.2/1.2/2.5</td>
<td>Up to 20% power saving</td>
</tr>
<tr>
<td>Clock Frequencies</td>
<td>400-1600MHz</td>
<td>800-1600MHz+</td>
<td>Higher BW</td>
</tr>
<tr>
<td>CAS Latency</td>
<td>5~14</td>
<td>9~24</td>
<td></td>
</tr>
<tr>
<td>Vref</td>
<td>VDDQ/2 (Ext)</td>
<td>Internal</td>
<td></td>
</tr>
<tr>
<td>DQ Validation</td>
<td>Setup/Hold</td>
<td>Data Eye</td>
<td>Borrowed from SERDES</td>
</tr>
<tr>
<td>Data Termination</td>
<td>VDDQ/2 (VTT)</td>
<td>VDDQ</td>
<td>Asymmetric Term.</td>
</tr>
<tr>
<td>Add/Cmd/Termination</td>
<td>VDDQ/2 (VTT)</td>
<td>VDDQ/2</td>
<td></td>
</tr>
<tr>
<td>I/O Standard</td>
<td>SSTL15</td>
<td>POD12</td>
<td>Power savings on “1” bits</td>
</tr>
<tr>
<td>On Chip Error Detection</td>
<td>No</td>
<td>Parity (Cmd/Add) CRC (DQ)</td>
<td>Server Class</td>
</tr>
<tr>
<td>Bank Grouping</td>
<td>No</td>
<td>4</td>
<td>“Ping-Pong” for efficient use</td>
</tr>
</tbody>
</table>
Overview – LPDDR3 vs LPDDR4

<table>
<thead>
<tr>
<th></th>
<th>LPDDR3</th>
<th>LPDDR4</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLK</td>
<td>400-800MHz</td>
<td>800-1600MHz</td>
<td>2x speed (possibly more)</td>
</tr>
<tr>
<td>Bandwidth</td>
<td>12.8GB/s (2ch)</td>
<td>25.6GB/s (2ch)</td>
<td>Higher BW</td>
</tr>
<tr>
<td>VDD2/VDDQ/VDD1</td>
<td>1.2/1.2/1.8</td>
<td>1.1/1.1/1.8</td>
<td>Power reduced 10%</td>
</tr>
<tr>
<td>I/O Interface</td>
<td>HSUL</td>
<td>LVSTL</td>
<td>40% I/O Power reduction vs. POD</td>
</tr>
<tr>
<td>DQ ODT</td>
<td>Vtt Term</td>
<td>VSSQ Term</td>
<td></td>
</tr>
<tr>
<td>CA ODT</td>
<td>No term</td>
<td>VSS Term (optional)</td>
<td></td>
</tr>
<tr>
<td>Vref</td>
<td>External</td>
<td>Internal</td>
<td></td>
</tr>
</tbody>
</table>

- DDR4 to use **Pseudo Open Drain** (POD)
 - Address, Command, Control continue to be SSTL
- LPDDR4 to use **Low Voltage Swing Terminated Logic** (LVSTL)
 - Both Data and Address
Overview – Speed related Eye challenges

<table>
<thead>
<tr>
<th>Mode</th>
<th>LPDDR1</th>
<th>LPDDR2</th>
<th>LPDDR3</th>
<th>LPDDR4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Rate</td>
<td>400Mbps</td>
<td>800Mbps</td>
<td>1600Mbps</td>
<td>3200Mbps</td>
</tr>
<tr>
<td>tCK</td>
<td>2.5ns</td>
<td>1.25ns</td>
<td>0.625ns</td>
<td>0.3125ns</td>
</tr>
<tr>
<td>Data eye area</td>
<td>14</td>
<td>1</td>
<td>0.5</td>
<td>0.09</td>
</tr>
<tr>
<td>(Normalized)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Semicon West: High Performance & Low Power Memory Trends – SK Hynix
New Drive Standards – Difference

DDR4

DQ, DQS, DM, TDQS

DDR3

DQ, DQS, DM, TDQS
New Drive Standards – Why?

- Current still flows when driving low

![Diagram showing current flow in DDR4 and DDR3 standards](image-url)
New Drive Standards – Why?

- No current draw when driving a high
Power Savings with DBI

- Ensure more 1’s than 0’s with POD
- If more than 4 bits in a byte are 0, toggle bits
- DBI (Data Bit Inversion) shared with DM => only one feature enabled
- DBI pin is I/O (affects both reads and writes)
PreLayout SI Simulation
DDRx Routing Guidelines

- **Constraint-driven routing**
 - Designer knows where the traces should be routed
 - Precise location of traces & vias
 - Control style of routing incl serpentine
e- Things to observe while routing DDRx
 - Width & clearance rules
 - Placement intentions
 - Netline organization
 - Layer restrictions
 - Pad/via entry rules (angle, size)
 - Diff pair rules
Using Sketch routing with DDR3 (video)
Simple Comparison

- Controller -> 50 Ohm T-Line -> DRAM
- Vary DRAM’s ODT to see center level of eye
- 2400Mbps Data rate
DDR3 – sweeping Rx ODT

No change in Center of Eye with ODT
DDR4 – Eye shifting

Eye center shifts with ODT change
Eye center shifts with ODT change
Xilinx VCU108 UltraScale Dev Board
What is Power Integrity?

- **What is a Power Distribution Network (PDN)?**
 - The path (or interconnects) from PWR to ICs (Active Devices)
 - Including PCBs and packages
 - Planes, routed traces, and decoupling capacitors
- **Deliver adequate power from DC->HF**
- **Minimize EMI issues**
- **Provide low-noise reference path for signaling**
Plane Design & the PDN

- Meeting Power Integrity requirements
 - Design PDN (path from power supply to ICs) of low impedance
 - As if an ideal voltage source were directly connected to ICs
 - Use impedance to represent and measure PDN quality
Power Integrity Analysis

- **DC Drop Analysis**
 - Excessive Voltage Drop & High Current Densities
 - Batch Analysis of Supply Nets

- **AC Power Plane Analysis**
 - Capacitor Selection/Mounting
 - Power Supply Impedance

- **Plane Noise Analysis**
 - Voltage Ripples
Power Integrity Optimization (Why?)

- **Reduce Product Costs**
 - Minimizing capacitor BOM (more Caps is worse)
 - Reducing PCB size and layer count
 - Eliminating design iterations
 - Up-front PDN planning & Improve time-to-results

- **Improve Product Reliability**
 - Identifying excessive voltage drop and high current densities at DC
 - Providing stable AC power through capacitor decoupling
DC Drop and Thermal Analysis

• Identify Failures Easily
 – Voltage drop magnitude is easily measured
 – Excessive current density clearly
 – Determine if current density is causing thermal failure

• Create an Optimized Solution
 – How much copper is needed?
 – Optimize component placement?
 – Are additional stitching vias required?
Power Integrity/Thermal Integrity Effects

• Analyze **Joule Heating** effects in traces
 – Identify/localize sensitive area on board
 – Minimize field failures and increase product reliability
Power Integrity Effects
Power Integrity Effects from DDR3 switching

Signal held high

PDN From DDR3 Board

Remaining signals

PRBS @ 2400MT/s

DQS clock @ 1.2GHz
Power Integrity Effects from DDR3 switching

150mV noise from switching of other bits in lane
Integrated Design Flow

- Tight validation for Pre/Post Layout
- Minimize errors, increase accuracy
- Reduce risk and field failures
- Lower cost and reduce time-to-market

SI/PI/Thermal Simulation
Pre/Post

Architectural/Technology Investigation
Performance/Feasibility Analysis
Noise/Crosstalk/Termination/EMI

Constraints

Stackup/Placements
Length/Impedance/via

Board Layout/Route

Constraints

Schematic Design

Library/Symbols
Design Variants

Constraints

• Tight validation for Pre/Post Layout
• Minimize errors, increase accuracy
• Reduce risk and field failures
• Lower cost and reduce time-to-market
EDA Direct Inc.
(408) 496-5890
(888) 669-9EDA

To enroll for our upcoming seminars, workshops, training classes, and view demo videos of our products visit www.edadirect.com